
Performance Comparison and Evaluation of
WebSocket Frameworks: Netty, Undertow, Vert.x,

Grizzly and Jetty

Yukun Wang1, Lei Huang1, Xiaoyou Liu2, Tao Sun2, Kai Lei1, *
1Shenzhen Key Lab for Information Centric Networking & Blockchain Technology (ICNLAB),

School of Electronics and Computer Engineering (SECE), Peking University, Shenzhen 518055, P.R. China
2The Network Information Center, University Town of Shenzhen, Shenzhen 518055, P.R. China

Email: {ykwang, lhuang}@pku.edu.cn, {liuxy, suntao}@utsz.edu.cn
Corresponding Author*: leik@pkusz.edu.cn

Abstract—The WebSocket protocol emerges to supersede existing
bidirectional communication technologies that use HTTP as a
transport layer. Currently, there are many network application
frameworks that support the WebSocket protocol, but have
different behaviors in performance of various aspects. To study
and compare the performance of common WebSocket
frameworks, say Netty, Undertow, Vert.x, Grizzly and Jetty, in
this paper, we use concurrency test, flow test, connection test and
resource occupancy test. The experiment results show that Netty
and Undertow perform better in highly concurrent environments,
while Grizzly is suitable for large flow conditions. The results also
show that with persistent connection, Netty far outperforms other
frameworks, and that Vert.x and Undertow can handle most
requests within relatively shorter time. Besides, Netty and Vert.x
occupy less CPU and memory resources in comparison with other
frameworks.

Keywords- WebSocket; Netty; performance evaluation;
concurrency test; flow test

I. INTRODUCTION
Before the emergence of WebSocket, creating web

applications that need bidirectional communication between a
client and a server (e.g., instant messaging and gaming
applications) has required an abuse of HTTP to poll the server
for updates while sending upstream notifications as distinct
HTTP calls [1]. The WebSocket Protocol is designed to
supersede existing bidirectional communication technologies
that use HTTP as a transport layer [1]. Such technologies were
implemented as trade-offs between efficiency and reliability
because HTTP was not initially meant to be used for
bidirectional communication [1]. Some researchers adopt a
completely different basic network architecture called NDN [2]
and can achieve congestion control based on RCP [3].
Currently, with the development of web technologies, there are
a number of web application frameworks that support the
WebSocket protocol, such as Netty, Undertow, Vert.x, Grizzly
and Jetty. Netty is a NIO client server framework which
enables quick and easy development of network applications
with high performance [4]. Undertow is a flexible performant
web server written in java, providing both blocking and non-
blocking API’s based on NIO [5]. Eclipse Vert.x is a tool-kit
for building reactive applications on the JVM [6]. The Grizzly

NIO framework has been designed to help developers to take
advantage of the Java NIO API to build scalable and robust
servers [7]. Eclipse Jetty provides a Web server and
javax.servlet container, plus support for HTTP/2, WebSocket,
OSGi, JMX, JNDI, JAAS and many other integrations [8].

This paper aims to compare and evaluate the performance
of the above mentioned frameworks from various aspects (all
implemented in Java). To design the experiments, we mainly
focus on four aspects: concurrency, flow, connection type and
resource occupancy. To achieve solid conclusions, we conduct
the experiments and analyze the results in detail. It should be
mentioned that there are also other WebSocket frameworks that
we do not compare in this paper, such as Spray, Node.js and
Go because they are not implemented in Java, therefore, it may
be somewhat not fair to compare them together.

The main contributions of this paper can be outlined as
follows:

 We compare the prevailing Netty framework with
other widely used WebSocket frameworks, say
Undertow, Vert.x, Grizzly and Jetty, making a
conclusion of which situation they ought to be used.

 By means of concurrency test, flow test, connection
test and resource occupancy test, we can evaluate
performance from various aspects, including the
number of concurrent requests, the flow amount, the
connection type and CPU and memory resource
occupancy.

The rest of this paper is organized as follows. Section II
discusses related work. Section III introduces the experiment
environment, including hardware environment, server
environment and testing tools. Section IV describes our test
methodology in detail. Section V presents the corresponding
results and analysis. Finally, Section VI concludes.

II. RELATED WORK
To the best of our knowledge, there have been few studies

evaluating and analyzing common WebSocket frameworks, say
Netty, Undertow, Vert.x, Grizzly and Jetty. However, there
have been some studies considering WebSocket protocol

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

performance evaluation. D. Skvorc evaluated the performance
of WebSocket protocol with respect to the underlying TCP
protocol, and compared the two against the latency and amount
of generated network traffic [9]. D. Skvorc found that except a
small overhead imposed due to initial handshaking,
WebSocket-based communication does not consume any more
network traffic than plain TCP based communication [9].
Gábor Imre presented a WebSocket benchmark infrastructure
created for measuring server-side performance of the
WebSocket protocol [10]. This infrastructure enables black-box
measurements independently of the server-side implementation.

Besides, there have been some studies related to
WebSocket algorithms and applications. Ajinkya Mulay
proposed a WebSocket connection management algorithm for
IoT, focusing on improving and adapting the WebSocket
protocol for connecting IoT devices [11]. The algorithm can be
applied to early warning earthquake alert applications. Hirotaka
Nakajima proposed HTTP over WebSocket proxy system to
defeat delay [12]. HTTP was used to achieve end-to-end
communication. Each HTTP request and response was
encapsulated into WebSocket packet at the client and server.
Junjie Feng presented a solution for runtime browser session
migration and management based on WebSocket. The protocol
provides a persistent connection between the server and clients,
and either of them can initiate data transfer at any time [13].

There have also been some studies with respect to the
applications of Netty, Jetty and Vert.x. Shouheng Zhang
described a server structure based on Netty for an internet-
based laboratory [14]. It has excellent scalability. Zhang Yu put
forward a kind of optimization design method of
communication service system for vehicle remote monitoring
based on the Netty pattern [15]. The system can achieve high
efficiency and accuracy of data communication and
information exchange. Lin Biying focused on using Jetty as a
server network management system, with a custom
asynchronous Servlet to improve the performance of an
intelligent network management system [16]. Pratibha P.
Dhekale used Jetty server to achieve efficient data search using
Map Reduce framework [17]. Venkatesh-Prasad Ranganath
proposed a set of communication patterns to enable the
construction of medical systems by composing devices and
apps in Integrated Clinical Environments (ICE) [18]. The
proposed patterns have been successfully implemented on
Vert.x.

III. EXPERIMENT ENVIRONMENT
In this section, we introduce the hardware environment and

server configuration of the five WebSocket frameworks, as
well as the testing tools used to evaluate the performance of

these frameworks.

A. Hardware Environment
The testbed of our experiment consists of two parts, the

client and the server, as shown in Fig. 1. The five selected
WebSocket frameworks are implemented and deployed
separately on the server. The Apache Bench is deployed on the
client. Due to the feature of Apache Bench that it occupies little
resources which can be omitted in the experiment, we deploy
the server and the client into one single machine.

The machine in our testbed runs Microsoft Windows 7 SP1
x64, with an Intel Core i5-3470 processor with four cores, 8GB
of RAM and a 500GB disk. All non-essential processes were
killed to prevent their impact on the experiment results.

B. Server Configuration
It’s mainly to compare WebSocket frameworks of Netty,

Undertow, Vert.x, Grizzly and Jetty in our study, so we
implement and deploy these five frameworks separately.

 Apache: To achieve stable and accurate results, we use
Apache 2.4.29, which is the latest stable version
available. Compared with earlier versions of Apache,
this version contains core enhancements, module
enhancements and program enhancements [19].

 Netty: We use Netty 4.1.19.Final, which is also the
latest stable version. Netty is an asynchronous event-
driven network application framework for rapid
development of maintainable high performance
protocol servers and clients [4].

 Undertow: For Undertow, we use 1.4.12.Final. It is the
current stable branch, which is recommended for
production use. Undertow is sponsored by JBoss. It has
a composition based architecture that allows you to
build a web server by combining small single purpose
handlers [5].

 Vert.x: Vert.x 3.5.0. Eclipse Vert.x is a tool-kit for
building reactive applications on the JVM. It is also
event driven and non-blocking [6].

 Grizzly: We use Grizzly 2.4.0, the latest stable release.
Grizzly is to help developers to build scalable and
robust servers using NIO as well as offering extended
framework components, such as WebSocket [7].

 Jetty: We use the latest release of Eclipse Jetty,
9.4.8.v20171121. Eclipse Jetty provides a Web server
and javax.servlet container, plus support for HTTP/2,
WebSocket, OSGi, JMX, JNDI, JAAS and many other
integrations. These components are open source and
available for commercial use and distribution [8].

C. Testing Tools
We divide the tests into four parts: concurrency test, flow

test, connection test and resource occupancy test. We use two
testing tools in order to make our tests more comprehensive.
For the first three parts, we use Apache Bench to accomplish
the test, while for the last part, we use VisualVM.

Fig. 1. Testbed setup.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

 Apache Bench: Apache Bench is a stress testing tool
provided in Apache to benchmark Apache Hypertext
Transfer Protocol (HTTP) server as well as other
servers. It especially shows how many requests per
second the server is capable of serving. In our test, we
use Apache Bench provided in Apache 2.4.29, which is
the latest stable version available [19].

 VisualVM: VisualVM is a visual tool integrating
command line JDK tools and lightweight profiling
capabilities [20]. It is designed for both development
and production time use. We use the latest version 1.4
to inspect the CPU and memory resources occupied by
the different WebSocket frameworks. We can get both
visual and numerical results through it.

IV. TEST METHODOLOGY
The experiments evaluated the results from four aspects, i.e.

concurrency test, flow test, connection test and resource
occupancy test. To achieve accurate and effective results, we
must follow the one-factor-at-a-time experiment principle [21]
to conduct out tests.

A. Concurrency Test
Concurrency test aims to observe and evaluate the

performance of different WebSocket frameworks at different
levels of concurrency number. In our test, we implement the
five WebSocket frameworks separately, we use non-persistent
HTTP connections, and the servers reply with HTML
documents of the same length (less than 1KB). We set the total
number of requests to 10,000 and vary the concurrent request
number from 10 to 1,000 (more specifically, we use 10, 100,
200, 500 and 1,000 as the Apache Bench concurrency
parameter) to test the performance of the five different
frameworks. We record a few parameters provided by the
Apache Bench tool, including Requests per Second (RPS),
Time per Request (TPR) and 90% processing time.

For all the tests, we follow the one-factor-at-a-time
principle, and to avoid the inaccuracy brought by accidental
deviation, each test is repeated three times and the average
number is adopted. Besides, we reboot the server after each
single test to make sure that they are equally treated.

B. Flow Test
Flow test is to test the performance of different frameworks

when faced with different amount of data flow. In our test, we
implement the five WebSocket frameworks separately, we use
non-persistent HTTP connections, the concurrent request
number is fixed to 100 and the total number of requests is fixed
to 10,000, while the servers reply with HTML documents of
different lengths (less than 1KB, 5KB, 10KB, 20KB, 50KB and
100KB). We record the Time per Request (TPR) parameter
provided by the Apache Bench tool.

Like in concurrency test, each test is repeated three times
and the average number is adopted. Besides, the server is
rebooted after each single test.

C. Connection Test
We use connection test to see the different performance of

these frameworks using persistent connections (i.e. HTTP
keep-alive) and non-persistent connections (i.e. HTTP close).
In our test, we implement the five WebSocket frameworks
separately, the concurrent request number is fixed to 100 and
the total number of requests is fixed to 10,000, and the servers
reply with HTML documents of the same length (less than
1KB), while we use persistent connections and non-persistent
connections. We record the Requests per Second (RPS)
parameter provided by the Apache Bench tool.

Same as in concurrency test, each test is repeated three
times and the server is rebooted after each single test.

D. Resource Occupancy
Resource occupancy test is conducted to observe and

compare the CPU and memory resources occupied by different
frameworks. In our test, we implement the five WebSocket
frameworks separately, we use non-persistent HTTP
connections, the concurrent request number is fixed to 100, the
total number of requests is fixed to 10,000, and the servers
reply with HTML documents of the same length (less than
1KB). We use VisualVM to observe the CPU and memory
resources taken up by the frameworks.

Same as the tests above, each test is repeated three times
and the server is rebooted after each single test.

V. EXPERIMENT RESULTS

A. Results and Analysis of Concurrency Test
We did concurrency test to the five WebSocket frameworks

at different concurrency levels, with the document length less
than 1KB and completed 10,000 requests. The results are
shown in Fig. 2. As we can see, with the increase of
concurrency level, the number of requests handled per second
decreases, this is because the frameworks cannot handle so
many concurrent requests at the same time. Besides, with the
change of the concurrency level, Netty has the highest RPS
most of the time. When the concurrency level is less than 500,
Undertow has similar behaviors to Netty, however, when the
concurrency level comes to 1,000, Netty’s performance far

Fig. 2. Concurrency test result.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

outperforms other frameworks. Behind Undertow is Vert.x,
while Jetty and Grizzly have relatively smaller RPS.

Fig. 3 shows the average time when 90% of the requests are
replied. It can be seen that when the concurrency number is
large, Netty has an absolute advantage. But when the
concurrency level is not that high, Vert.x and Undertow can
handle 90% of the requests as fast as possible.

Through concurrency test, we can see that Netty and
Undertow are suitable for circumstances with large number of
concurrent requests, while Grizzly and Jetty do not perform
well under the same circumstance. Vert.x and Undertow can
handle most requests in a short time when the concurrency
level is not that high.

B. Results and Analysis of Flow Test
We did flow test to study the performance of different

frameworks when faced with different amount of data flow.
The results are shown in Fig. 4. It is shown that when the data
returned per request is less than 20KB, Netty, Undertow and
Vert.x far outperform Grizzly and Jetty. However, with the

increase of data, Grizzly performs better and better, and when
data returned per request comes to 100KB, Grizzly performs
the best, i.e. has the least time per request.

Through flow test, we can draw the conclusion that Grizzly
is fit for large data flow conditions, under which the data
returned per request is relatively large.

C. Results and Analysis of Connection Test
We did connection test to observe the performance of the

five frameworks using persistent connections (i.e. HTTP keep-
alive) and non-persistent connections (i.e. HTTP close). With
non-persistent connections as default, the Apache Bench sets
up an HTTP connection, completes data transfer and closes the
connection after that. But with persistent connections, the
connection may not be closed immediately, and several
requests may be replied with the same connection, so the
throughput may be improved.

It is shown is Fig. 5 that with persistent connections, all
frameworks perform far better than with non-persistent
connections. However, the performance of Netty and Undertow,
especially Netty, is even better than any other framework, with
nearly 25,000 requests per second.

Through connection test, we can see that Netty and
Undertow, especially Netty, can have excellent performance
when using persistent connections.

D. Results and Analysis of Resource Occupancy
We did resource occupancy test to analyze the CPU and

Fig. 3. Time when 90% requests handled.

Fig. 4. Flow test result.

Fig. 5. Connection test result.

Fig. 6. Maximum CPU occupancy.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

memory resources taken up by these frameworks. The results
are shown in Fig. 6 and Fig. 7. We can see that Netty and
Vert.x take the least CPU resource, while Grizzly occupies the
most CPU resource and memory heap.

VI. CONCLUSIONS
This paper presents a measurement study of the five

WebSocket frameworks, i.e. Netty, Undertow, Vert.x, Grizzly
and Jetty. To the best of our knowledge, this is the first paper to
compare and evaluate the performance of these WebSocket
frameworks from aspects of concurrency, flow, connection
type and resource occupancy.

In short, compared with other WebSocket frameworks,
Netty and Undertow perform better under highly concurrent
situations, while Grizzly is more suitable for large flow
conditions. When using persistent connections under
concurrency level 100, Netty and Undertow, especially Netty,
performs far better than any other framework. At a relatively
high concurrency level, Vert.x and Undertow can handle most
of the requests in time. Finally, Netty and Vert.x occupy less
CPU resource, while Grizzly takes up more CPU and memory
resources in comparison.

In our experiments, we follow the one-factor-at-a-time
principle, and only consider the difference of the different
WebSocket frameworks, not including the architecture design
or the programming language. So it is the focus of our future
work to study the performance effect in combination with
architecture design and programming language. Besides, this
paper only compares performance of the frameworks, and their
security and extensibility also need further study. Finally, the
above mentioned frameworks may be applied in decomposed
wireless networks [22], and we are also interested in their
performance in that scenario.

ACKNOWLEDGMENT
This work has been financially supported by Shenzhen Key

Fundamental Research Projects (Grant No.
JCYJ20170412150946024 and JCYJ20170412151008290) and
Guangdong Pre-national project 2014GKXM054.

REFERENCES
[1] I. Fette and A. Melnikov, "The WebSocket Protocol", IETF RFC 6455,

Dec. 2011.
[2] K. Lei, S. Zhong, F. Zhu, K. Xu and H Zhang, “A NDN IoT Content

Distribution Model with Network Coding Enhanced Forwarding
Strategy for 5G”, IEEE Transactions on Industrial Informatics, vol. PP,
Dec. 2017, pp. 1-1.

[3] K. Lei, C. Hou, L. Li and K. Xu, “A RCP-Based Congestion Control
Protocol in Named Data Networking”, Proc. IEEE International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, IEEE, Sep. 2015, pp. 538-541.

[4] http://netty.io/.
[5] http://undertow.io/.
[6] http://vertx.io/.
[7] https://javaee.github.io/grizzly/.
[8] http://www.eclipse.org/jetty/.
[9] D. Skvorc, M. Horvat and S. Srbljic, “Performance evaluation of

Websocket protocol for implementation of full-duplex web streams”,
Proc. International Convention on Information and Communication
Technology, Electronics and Microelectronics, IEEE, May. 2014, pp.
1003-1008.

[10] G. Imre and G. Mezei, “Introduction to a WebSocket benchmarking
infrastructure”, Proc. Zooming Innovation in Consumer Electronics
International Conference, IEEE, Jun. 2016, pp. 84-87.

[11] A. Mulay, H. Ochiai and H. Esaki, “IoT WebSocket Connection
Management Algorithm for Early Warning Earthquake Alert
Applications”, Proc. 10th International Conference on Utility and Cloud
Computing, ACM, Dec. 2017, pp. 189-194.

[12] H. Nakajima, M. Isshiki and Y. Takefuji, “Websocket proxy system for
mobile devices”, 2nd Global Conference on Consumer Electronics,
IEEE, 2013, pp. 315-317.

[13] J. Feng and A. Harwood, “BrowserCloud: A Personal Cloud for Browser
Session Migration and Management”, Proc. 24th International
Conference on World Wide Web, ACM, May. 2015, pp. 1491-1496.

[14] S. Zhang and S. Zhu, “Server structure based on netty framework for
internet-based laboratory”, Proc. IEEE International Conference on
Control and Automation, IEEE, Jun. 2013, pp. 538-541.

[15] Y. Zhang, L. Yu, Y. Li and X. Che, “Optimization Design Method of
Communication Service System for Vehicle Remote Monitoring Based
on Netty Pattern”, Proc. Chinese Automation Congress (CAC), IEEE,
Oct. 2017, pp. 682-686.

[16] B. Lin and Y. Pu, “Jetty improves the performance of network
management system based on TR069 protocol”, Proc. IEEE
International Conference on Intelligent Computing and Intelligent
Systems, IEEE, Oct. 2010, pp. 799-801.

[17] PP. Dhekale and N. Jichkar, “Efficient Data Search Using Map Reduce
Framework”, Proc. 2016 World Conference on Futuristic Trends in
Research and Innovation for Social Welfare, Coimbatore, 2016, pp. 1-4.

[18] VP. Ranganath, JK. Yu, J. Hatcliff and Robby, “Communication
patterns for interconnecting and composing medical systems”, Proc.
Engineering in Medicine and Biology Society, IEEE, Aug. 2015, pp.
1711-1716.

[19] http://www.apache.org/.
[20] http://visualvm.github.io/.
[21] R. Jain, “The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation and
Modeling”, John Wiley & Sons, Inc., New York, NY, 1991.

[22] L. Dai and B. Bai, “Optimal Decomposition for Large-Scale
Infrastructure-Based Wireless Networks”, IEEE Transactions on
Wireless Communications, vol. 16, Aug. 2017, pp. 4956-4969.

Fig. 7. Maximum memory heap occupancy.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

